Wednesday, June 15, 2011

Summary of algebra - Topics in precalculus

 



StatCounter - Free Web Tracker and Counter
Topics in
P R E C A L C U L U S
1

The Formal Rules of Algebra

ALGEBRA  is a method of written calculations.  Now what is a calculation? It is replacing one set of symbols with another? In arithmetic we may replace the symbols  '2 + 2'  with the symbol  '4.' In algebra we may replace  'a + (−a)'  with '0.'
a + (−a) = 0.
A formal rule, then, shows how an expression written in one form may be rewritten in a different form.  The = sign means  "may be rewritten as"  or  "may be replaced by."
If p and q are statements (equations), then a rule
If p, then q,
or equivalently
p implies q,
means:  We may replace statement p with statement q.  For example,
x + a = b  implies  x = b − a.
That means that we may replace the statement  'x + a = b'  with the statement  'x = b − a.'
Algebra depends on how things look.  We can say, then, that algebra is a system of formal rules.  The following are what we are permitted to write.
(See the complete course, Skill in Algebra.)
a = a Identity
 
If a = b, then b = a. Symmetry
 
If a = b  and  b = c, then a = c.   Transitivity
a + b  =  b + a
 
a· b  =  b· a
  15.  The multiplicative inverse or reciprocal of  a,
  5.    symbolized as  1
a
 (a 0)
a·  1
a
  =   1
a
· a   =  1
  The reciprocal of   p
q
 is  q
p
.
a
b
  =   a·  1
b
   a
b
 = −  a
b
. a
  b
 = −  a
b
. a
b
 =  a
b
.
0
a
  =  0.   a
0
  =  No value.   0
0
  =  Any number.
m(a + b) = ma + mb The distributive rule/
  Common factor
 
(xa)(xb) = x² − (a + b)x + ab  
  Quadratic trinomial
 
(a ± b)² = a² ± 2ab + b² Perfect square trinomial
 
(a + b)(ab) = a² − b² The difference of
  two squares
 
(a ± b)(a² ab + b²) = a³ ± b³     The sum or difference of
  two cubes
If      If   
 
  a  =  b,   a  =  b,
 
then      then   
 
        a + c  =  b + c.   ac  =  bc.
If    
 
  a  =  b,
 
then    
 
  a  =  b.
If    
 
  a  <  b,
 
then    
 
  a  >  b.
If     If  
 
    x + a  =  b,         xa  =  b,
 
then     then  
  x  =  ba.     x  =  a + b.
***
If     If  
 
    ax  =  b,        x
   a
 =  b,
 
then     then  
  x  =  b
a
  x  =  ab.
17.  Change of sense when solving an inequality
If    
 
  ax  < b,    
 
then    
 
  x  > − b
a
.
18.  Absolute value
If  |x| = b,  then  x = b  or  x = −b.
If  |x| < b  then  −b < x < b.
If  |x| > b  (and b > 0), then  x > b  or  x < −b.
19.  The principle of equivalent fractions
x
y
 =  ax
ay
 
and symmetrically,
ax
ay
 =  x
y
We may multiply both the numerator and denominator by the same factor; we may divide both by the same factor.
20.  Multiplication of fractions
a
b
·    c
d
 =   ac
bd
 
a ·    c
d
 =   ac
d
21.  Division of fractions (Complex fractions)
Division is multiplication by the reciprocal.
22.  Addition of fractions
a
c
 +  b
c
 =  a + b
   c
Same denominator
 
a
b
 +   c
d
 =  ad + bc
   bd
Different denominators with
no common factors
 
 a 
bc
 +   e 
cd
 =  ad + be
   bcd
Different denominators with
common factors
The common denominator is the LCM of denominators.
23.  The rules of exponents
aman  =  am+n   Multiplying or dividing
 
am
an 
 =  am−n   powers of the same base
 
 
(ab)n  =  anbn   Power of a product of factors
 
 
(am)n  =  amn   Power of a power
24.  The definition of a negative exponent
an  =   1 
an
25.  The definition of exponent 0
a0 = 1
26.  The definition of the square root radical
The square root radical squared produces the radicand.
27.  Equations of the form  a² = b
If
a²  =  b,
 
then
a  =  ±.
28.  Multiplying/Factoring radicals
 = 
 
and symmetrically,
 
 = 
log  x
y
  =  log x  −  log y.
log 1 = 0.   logbb = 1.



Please make a donation to keep TheMathPage online.
Even $1 will help.

Copyright © 2001-2011 Lawrence Spector
Questions or comments?

No comments:

Post a Comment

About Me

My photo
According to tradition the first gift was knowledge.